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Abstract 

The Galilei group is combined with two one-dimensional groups, to form a twelve- 
dimensional extended Galilei group. Irreducible representations of this group depend 
upon two indices m, s that can, respectively, be interpreted as the mass and spin of a 
non-relativistic particle. It turns out that the true irreducible representations of the 
ordinary Galilei group correspond to m = 0, and this explains why these representations 
have no physical interpretation. 

1. Introduction 

In/Sn~i & Wigner (1952) have shown that  none of  the true irreducible 
representations of  the Galilei group have a physical interpretation. Only 
the ray representations o f  the Galilei group (Bargmann, 1954) have a 
physical interpretation. The result obtained by In/Sntt and Wigner  is 
surprising, because the Galilei group is of  fundamental  importance in 
non-relativistic quan tum mechanics. However,  non-relativistic quan tum 
mechanics is covariant  under a larger group of  t ransformations than the 
Galilei group. Consider the transformations 

~b --> exp(iet)~b (1.1) 

-+ exp(i/3) ~b (1.2) 

where c~ and/3 are real numbers  and t is the time. The t ransformation (1.1) 
represents a change in the normalisat ion of  the potential energy, (1.2) is 
a simple change of  phase. Strictly speaking (1.1) and (1.2) are unitary 
transformations,  under which the state of  a non-relativistic particle is 
invariant. In  the present work these transformations are combined with 
the Galilei group to form a larger group that  we call the extended Galilei 
group. The Lie algebra o f  this group has irreducible representations depend- 
ing upon  two indices that  can be interpreted as the mass and spin o f  a 
particle. 
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2. The Extended Galilei Group 

The representatives of  the infinitesimal generators,  and the parameters  
of  the extended Galilei g roup  are given in the following table: 

Transformation Generator Parameter 

I Pure Galilei G = (G1 G2 G3) v = (Vl/;2 v3) 
II Spatial translation T = (T1 T2 T3) a = (aj a2 a3) 
III Time translation D ~- 
IV Rotation J = (J1 J2 g3) u = (ul u2 u3) 
V Change of energy normalisation G4 7 
VI Change of phase C K 

By the extended Galilei algebra we unders tand the relations 

[G,, Gk] = 0, [T,, Tk] = 0, [T, D] = 0 
(2.1) 

[T,, Gk] = C3,k, [G, D] = T (i, k = 1, 2, 3) 

[G4, D] = C, [G4, G] = 0, [G4, T] = 0 (2.2) 

[C, G] = 0, [C, G4] = 0, [C, T] = 0, [C, D] = 0 (2.3) 

together  with the relations involving J ,  tha t  are the same as in the ordinary 
Galilei algebra. C and G 4 a r e  scalars. C commutes  with all infinitesimal 
generators,  and is an invar iant  o f  the group.  In  every irreducible representa-  
t ion of  the algebra, we have 

C = imI (2.4) 

where 1 is the unit  opera to r  and m is a number .  I f  m = 0, the extended 
algebra reduces to the ordinary  Galilei algebra. Assuming C r  0, we 
define 

T4 = D + �89 - 1 T  z (2.5) 

T4 commutes  with all generators  except G4, and we may  write 

[T.,  Tv] = 0, [G~, Gv] = 0, [T~, G.] = C 3 ~  (/z, v = 1,2, 3, 4) 

(2.6) 
This is the familiar  Heisenberg algebra, if  C is pure  imaginary.  Fo r  each 
real value of  m there exists only one irreducible representat ion H9(m)  of  
this algebra (yon Neumann ,  1931). 

I t  is f rom now on assumed that  T~,, G. are infinite dimensional  anti- 
hermitean matrices. The  matrices 

G, T, D = Z 4 - � 8 9  -1 T 2, J = C -1 T • G, G4 (2.7) 

satisfy all the relations of  the extended Galilei algebra, and H9(m)  is thus 
an irreducible representat ion of  the extended Galilei group. The  Lie algebra 
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of the rotation group is a subalgebra of the Galilei algebra, and denoting 
by R(s) an irreducible representation of the rotation group, an irreducible 
representation of the extended Galilei group is given by 

G(m,s) = It9(rn) | R(s) 

- ~  < m < + ~ ,  r n ~ 0 ,  s =  0,�89 1,3, . . .  

The hermitean matrix -iT4 commutes with the generators G, T, D, 3 of 
the Galilei group, and is a Galilei invariant. We denote by ]~,m,s) an 
eigenvector of-iT4, where 

(iT4 -k c~) ]~, m,s) = 0 (2.8) 

The linearly independent vectors that satisfy (2.8) span a subspace of 
G(m,s) that we denote by G(~,m,s), and this subspace is irreducible with 
respect to Galilei transformations. We have thus obtained an irreducible 
representation of the Galilei group [ray representation because of the 
algebra (2.1)] that depends upon three indices ~. m, s. The sum of all 
Galilei invariant subspaces G(a,m,s), for all values of ~ between -o~ and 
+0% form the representation space G(m, s) of the extended Galilei algebra. 

3. Application to Quantum Mechanics 

Define the unitary matrices 

U(v) = exp(v. G), U(a) = exp(-a. T), 
(3.1) 

U(z) = exp(-~-D) U(u) = exp(u. J), 

U(7 , t~) = exp(TG 4 q- KC) (3.2) 

A Galilei transformation is represented by a matrix U(a, ~-,v,u) that is 
a product of the matrices (3.1), where the positions of the factors U(u) 
and U(~-) are, respectively, to the fight and to the left of U(v). The position 
of the factor U(a) is arbitrary, except for being to the left of U(u). An 
element of the extended Galilei group is represented by the matrix 

U =  U(~,, ~) U(a, r ,v,u) (3.3) 

By the help of the unitary matrix 

V = exp(-�89 2 G 4 C -2) 

we define the hermitean matrices 

X ,  = C -1 V + G. V, Pu = - i V + T ,  V (3.4) 

where 
[X., X.] = 0, [Pu,P.] = O, [Xu,P.] = i3~v 
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By making use of the familiar calculation rules of the Heisenberg algebra, 
we obtain the transformation equations 

U + X U = RX -~- vX4, U + X 4 U = X 4 + T (3.5) 

U+PU=RP+mv,  U+P4U=P4-v .RP- �89  
(3.6) 

RX = U+(n) X U(u), ca" = U+(n) e u(u) 

These equations make it reasonable to interpret X as the position operator, 
P as the momentum operator, and X4 as the time operator of a particle 
with mass m = -iC. With • = 0, the operator 

E =-Pa = iD 

transforms in the same way as the kinetic energy of the particle. E is there- 
fore interpreted as the energy operator. 

Under the transformation U of the full group, a wave function 
r = (xl~b) transforms into 

Ur = (x] Ul~b) = exp[i(~t +/3)] ~b(/"-1 x) (3.7) 

where (x I is a simultanous eigenbra of X,, 

r x) = < v  -~ x lr  = <xl v (a ,  ~, v, u)lr 

(x I U(y, re) = exp[i(~t + ]3)] (x] 

/ ' -~x denotes the inverse transformation of (3.5), c~ and fl are real numbers. 
The condition 

I f~(x)l 2 = Ir -I x)f z (3.8) 

is thus satisfied under the extended group also. 
A particle state is cbaracterised by the mass m, the spin s, and the normal- 

isation constant c~ of the energy. A particle is therefore represented by a 
Galilei invariant subspace G(=,m,s). However, in contrast to m and s, 
the value of c~ is arbitrary. Although the normalisation of the energy is 
arbitrary, it must be fixed, in order that the particle shall have a well- 
defined energy. The transformation U(9/) changes the particle representa- 
tion from the subspace G(ce, m,s) to another physically equivalent subspace 
G (~', m,s). Now 

pz 
--iT4 = P4 + 

and from (2.8) we get the Schrtdinger equation 

(X] (  P4 +2m--P2 c~) [a,m,s) = 0 

The conventional Schr6dinger state space is given by 

G(O,m,s) 
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Within the subspace G(c,, m, s) we define the scalar product 

(r r = f (r  (xl ) d 3 x 

where the physically realisable states ~ and ~ satisfy the relations 

(4, r = (Ur U40, 
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(q~, X~, ~b) = (X~, ~b, ~b), (~,Pu ~b) = (Pt~ ~b, tb) 

4. Conclusion 

We have shown that a particle with mass rn and spin s is represented by 
a Galilei invariant subspace G(~,m,s) of the representation space G(m,s) 
of the extended Galilei group. All subspaces G(~,m,s) are physically 
equivalent representatives of the particle, and this necessitates trans- 
formations from one subspace to another. For this reason an extension of 
the Galilei group is introduced. For m = 0, the extended Galilei algebra 
reduces to the ordinary Galilei algebra. The representations obtained by 
Intinti and Wigner should therefore correspond to non-relativistic particles 
with zero mass, and this explains why a physical interpretation of these 
representations is impossible. 

All the dynamical variables, including the mass and the time, are functions 
of the infinitesimal generators of the extended Galilei group. In this respect 
the present theory has an advantage in comparison with the standard theory. 
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